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Wissenschaften, A-6020 Innsbruck, Austria
3 Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 25,
A-6020 Innsbruck, Austria

E-mail: f.bodoky@tnw.tudelft.nl, Otfried.Guehne@uibk.ac.at and m.blaauboer@tudelft.nl

Received 21 April 2009, in final form 1 July 2009
Published 1 September 2009
Online at stacks.iop.org/JPhysCM/21/395602

Abstract
We investigate the time evolution of entanglement under various models of decoherence: a
general heuristic model based on local relaxation and dephasing times, and two microscopic
models describing decoherence of electron spin qubits in quantum dots due to the hyperfine
interaction with the nuclei. For each of the decoherence models, we investigate and compare
how long the entanglement can be detected. We also introduce filtered witness operators, which
extend the available detection time and investigate this detection time for various multipartite
entangled states. By comparing the time required for detection with the time required for
generation and manipulation of entanglement, we estimate for a range of different entangled
states how many qubits can be entangled in a one-dimensional array of electron spin qubits.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Entanglement refers to non-classical correlations between
two [1–4] or more [5, 6] quantum particles, and the creation
of multiparticle entangled states constitutes a key step towards
quantum computation [7]. In this work, we investigate
the evolution of entangled states under different models
of decoherence: a heuristic model with a broad range of
applications, and two microscopic models specific for electron
spin qubits in quantum dots [8]. We show how entanglement
can be detected and how fast this needs to be done before the
states become disentangled by decoherence. We also estimate
for four different classes of multipartite entanglement which
class survives the longest, and how many entangled qubits can
be generated and detected with actual experimental means and
currently known decoherence times.

We consider decoherence of a local nature, i.e. the qubits
decohere in an uncorrelated way, as is the case in solid
state nanosystems such as electron spin qubits in quantum
dots [8], various superconducting qubits [9] and other solid
state implementations4: in these systems, the decoherence can
4 For a recent overview of more solid state qubit systems such as, for example,
nitrogen-vacancy centers in diamond, see [10] and references therein.

be characterized phenomenologically [11] by a relaxation time
T1 and a dephasing time T2. The microscopic origin of the
decoherence is still a matter of intensive research. In this
paper we discuss some microscopic models for electron spin
qubits in quantum dots and compare them with this heuristic
model.

Our proposed means to analyze entanglement are so-
called witness operators [12–16]: locally decomposable
observables with a positive expectation value for all separable
states and a negative expectation value for at least one
entangled state. The advantage of entanglement witnesses over
other methods such as, for example, full state tomography is
that they require less measurements, and thus less experimental
effort to detect and prove the existence of entanglement for a
given (mixed) state. Witnesses have intensively been used in
experiments with photons [17, 18] and trapped ions [19], but
so far only a few theoretical proposals exist for using witness
operators in solid state nanosystems [20].

This paper is organized as follows: in section 2 we briefly
summarize the mechanisms influencing the timescales T1 and
T2 for electron spin qubits. We describe two theoretical models
of dephasing for these qubits and compare them to the heuristic
master equation model. We also show how we calculate the
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decoherence of a multipartite state of separated qubits using
the Lindblad formalism. Next (section 3) we demonstrate our
main ideas and methods using the simplest case of two qubits,
compare the different models of decoherence and introduce
our filtered witness operator. In section 4 we consider both
GHZ and W states for three qubits. In section 5 we do the
same for four qubits and consider in addition the cluster and
Dicke entanglement classes. We also discuss the dependence
of the decay of entanglement on the initial state. Finally, in
section 6, we discuss the case of N qubits: we show that
the entanglement of a specific GHZ state can theoretically
be detected for any finite time, and discuss the feasibility
of generating and detecting many-qubit entangled states of
electron spin qubits based on decoherence and operational
timescales that have been measured in recent experiments on
single and double quantum dots.

2. Decoherence model

Decoherence is caused by uncontrolled interactions between
the qubit and the environment [21]. This effect is usually
characterized by two timescales, the phase randomization time
T2 (‘dephasing time’) and the time T1 in which the excited state
|1〉 relaxes to the ground state |0〉 by energy exchange with the
environment (‘relaxation time’) [11]. For electron spin qubits
(as for most solid state qubits) the dephasing time is much
shorter than the relaxation time, T2 � T1, and is therefore
the dominant timescale for the loss of quantum correlations. In
this section, we consider both a simple exponential model of
decoherence based on these two timescales, as well as use two
microscopic descriptions of dephasing for electron spin qubits
in quantum dots to derive more sophisticated time evolutions
of decoherence.

We start by briefly discussing decoherence mechanisms
for electron spin qubits. The original idea by Loss and
DiVincenzo [22] proposed to confine single electrons in a
quantum dot (an island of charge in a two-dimensional electron
gas) and apply a magnetic field to split the degeneracy of
the spin-up and spin-down states, thus creating a two-level
system serving as a carrier for quantum information: an
electron spin qubit. Two electron spin qubits interact via a
Heisenberg coupling, and this interaction can be controlled by
tuning the potential barrier between two neighboring dots [23].
Single-qubit operations rely on electron spin resonance and
can be performed by applying local electric or magnetic
fields [24, 25].

Decoherence—interaction with the environment—is
mainly mediated by two processes, spin–orbit interaction and
hyperfine interaction [8]. Spin–orbit interaction does not
have a direct effect on the electron spin, since the electrons
do not move, but it leads to a mixing of spin and orbital
degrees of freedom [26]. In GaAs quantum dots, spin–orbit
interaction is estimated to be small—both experimentally [27]
and theoretically [28]—compared to the hyperfine interaction
with the nuclei, so that the latter is the dominant source of
dephasing.

If the atoms of the semiconductor material have a non-zero
nuclear magnetic moment (such as, for example, in GaAs; in
other materials, such as purified SiC, this effect is not present),
the electron spin �S interacts with the nuclear spins via the
hyperfine interaction [29]: the Hamiltonian for such a system
can be written as [31, 32]

Hh f = b0Sz + εnz Iz + �h · �S. (1)

Here, b0 = g∗μB B0 (εnz = gIμn B0) is the electron
(nuclear) Zeeman splitting (calculated using the Bohr (nuclear)
magneton μB (μN , where μN � μB) and the effective g
factor of the electron (nuclei), g∗ (gI ), which in GaAs takes
the value g∗ = −0.44). Next, Iz = ∑n−1

k=0
�I k
z is the sum over

the z component of all nuclear spins �I k , and �h = ∑n−1
k=0 Ak �Ik

denotes the quantum field of the nuclei acting on the electron
spin, where n are the number of nuclei whose wavefunction
overlaps with the electron’s wavefunction (n ≈ 105 for
typical dots), Ak denotes the coupling strength between the kth
nucleus and the electron. Since the electron’s wavefunction is
zero outside the dot, there is no overlap with the nuclei outside
the quantum dot—thus each electron in the array couples to
a different bath of nuclei, and the decoherence is thus local,
as stated above. Since hyperfine interaction is the dominant
source of noise, we can disregard other types of noise which
might induce some correlations between different qubits, such
as, for example, phonons.

For an intuitive semiclassical description of decoherence
due to hyperfine interaction the quantum field of the nuclear
spins can be treated as an additional (classical) magnetic
field—the Overhauser field—by replacing g∗μB �Bn ≡ �h. The
maximum value this field can reach in GaAs is about [30]
Bmax = 5 T for fully polarized nuclei. In low external magnetic
fields, the Overhauser field undergoes Gaussian fluctuations
around a root-mean-square value [31–33] of Bmax/

√
n. The

electron thus feels a total magnetic field which consists of
the sum of the controlled external field �B0 and the random
Overhauser field �Bn . The field’s longitudinal component
Bz

nuc (parallel to �B0) changes the precession frequency of the
electron spin by hz = g∗μB Bz

nuc. The transverse part Bx,y
nuc

changes the precession frequency even only in quadratic order,
≈ g∗μB(Bx,z)2nuc/B0. This random nuclear magnetic field
changes in time: two nuclei with different coupling strength
Ak can exchange their spin, thus leading to a change in the
Overhauser field Bn ; these fluctuations appear on a timescale of
10–100 μs (for a weak external field) [36], but could probably
be extended up to more than several seconds to minutes (for the
longitudinal nuclear field Bz

nuc in a strong external field B0)5.
The bulk dephasing time T ∗

2 (at which the fluctuating
nuclear magnetic field removes the phase information) can be
measured by rotating the spin in the xy plane, let it evolve
freely, and then rotate it back along the z axis for measurement
(so-called spin echo measurements). Each data point then has
to be averaged over many measurements, during which the
nuclear field evolves. This leads to an average dephasing time
T ∗

2 , which has been measured to be about 100 ns [38].

5 This is not confirmed experimentally, but the very slow decay of nuclear
spin polarization of up to several minutes is an indication for slow change of
Bz

nuc; see, e.g., [37].
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The dephasing time T2 of a single electron, on the other
hand, is very hard to measure, because it is not possible to
measure the initial orientation and strength of the nuclear field
with sufficient precision. Estimates in various regimes predict
T2 ∼ 1–100 μs: a good way to estimate T2 is by using a
Hahn echo technique, where the free evolution of the spin
due to the initial magnetic field is undone by reversing the
spin, but not the dephasing due to the change of this nuclear
field [41]. Assuming Gaussian fluctuations of the nuclear
field on a timescale of 10 s and (a conservatively estimated)
T ∗

2 = 10 ns, a time T2 = 10 μs can be extracted [8], which
has been confirmed by measurements [23] providing a lower
bound on T2 of 1.2 μs.

For a microscopic, quantum-mechanical treatment of
�h, we rewrite Hh f in (1) in a parallel and transversal
part [31, 32, 39, 40]:

Hh f = (b0 + hz)Sz︸ ︷︷ ︸
H0

h f

+ 1
2 (h+S− + h−S+)
︸ ︷︷ ︸

V

. (2)

V describes a flip–flop interaction between the electron and
a nucleus, thus the operators are the raising and lowering
operators for the spin (S± = Sx ± iSy) and a nucleus
(h± = hx ± ihy). This perturbation V is small as soon as
there is some external magnetic field and the energy mismatch
between the electron and the nuclear spin states suppresses
it, as discussed above: expressed in numbers, this requires
|A| � 2|g∗μB �B0 − gIμN �B0 + 2pI A| [39] or equivalently
(using μB 
 μN and low polarization) |A| � 2|g∗μB B0|,
which is fulfilled in typical experiments (with an external field
above �3 T; in [35, 46], for example, fields of up to 8 T
are used). A first approximation is to completely neglect this
term and only consider the change of precession frequency
due to the nuclear field hz . Using the central limit theorem
for a large number of nuclear spins results in a Gaussian
distribution for hz . The transverse correlator, defined as the
self-correlation function of the transverse spin component,
〈S+〉t = Tr[eiH0

h f t S+e−iH0
h f tρ(0)] (here, ρ(0) is the initial

density matrix of the combined system of electron and nuclei),
is given by [39, 40]

〈S(se)
+ 〉t = 〈S+〉0exp

[

− t2

2τ 2
se

+ i

h̄
(b + 〈hz〉)t

]

. (3)

As opposed to exponential decay of phase coherence with
timescale T2, (3) represents superexponential decay with a
characteristic time τse ≡ 2h̄/A

√
n/(1 − p2): for a GaAs

dot with almost no polarization, p � 1, one can estimate
τse ≈ 5 ns, which is much faster than the experimentally
observed T2 time. The second, imaginary part represents the
coherent rotation induced by the total magnetic field. The
value for 〈hz〉 depends on the initial state of the nuclei: for
a pure state with each nucleus having probability (1 + p)/2
for being in the excited state, it can directly be calculated as
〈hz〉 = p A/2, where A is the hyperfine coupling field.

A more sophisticated approach is to include the
perturbation term V in (2) and rewrite the von Neumann

equation in the form of a Nakajima–Zwanzig generalized
master equation (GME) [39]:

Pρ̇(t) = −iP L Pρ(t) − i
∫ t

0
�(t − t ′)ρ(t ′) dt ′. (4)

Here P is the projector on the electron subspace, L the
Liouville operator (LO ≡ [H,O] for any operator O) and
�(t) the self-energy superoperator. Using regular perturbation
theory in the parameter 1/b0 (i.e. for a high magnetic field
b0 
 A), some (unphysical) secular terms arise; these terms
do not occur by directly expanding �(t) in the GME. The
latter results in a self-correlation function for the transversal
spin of the form [39] (in the frame oscillating with a frequency
proportional to the Zeeman splitting)

〈S(bm)
+ 〉t = 〈S+〉t + R+(t) dt, (5)

where 〈S+〉t is the Markovian solution and R+(t) is the
remainder term, i.e. the difference between the exponential
and the non-Markovian solution in the Born approximation.
This can be written as R+(t) = i

∫ t
0 �(t − t ′)〈S(bm)

+ 〉t ′ dt ′
and solved by iterating to leading order in the parameter δ =
A/(4N[b0 + hz]) (corresponding to a high external field, since
δ ∼ A/b0). The solution depends strongly on the wavefunction
of the electron: we assume the electron to have a Gaussian
wavefunction in two dimensions, resulting in

R+(t)  −δ〈S+〉0exp

[
it AN

2h̄τbm(b0 + hz)

]

+ δτ 2
bm

t2

×
(

−1 + cos

[
t

τbm

]

+ p
t

τbm
sin

[
t

τbm

]

+ ip

{
t

τbm
cos

[
t

τbm

]

− sin

[
t

τbm

]})

. (6)

Here we have defined a characteristic time τbm = 2nh̄/A
(τbm ≈ 1 μs for GaAs quantum dots). In a realistic setting,
this correction term R+(t) is very small, since δ is very small:
in GaAs typically δ ≈ 10−6. Nonetheless, we will calculate
this correction for completeness.

Relaxation of an electron spin qubit is caused by the same
two effects as dephasing: spin–orbit and hyperfine interaction.
The required energy for the spin–orbit interaction to flip the
spin of the electron is provided by the phonons in the lattice of
the semiconductors forming the 2DEG, and can be calculated
as a function of the external magnetic field B0 [26]. The
hyperfine contribution to relaxation manifests itself as flips
of the electron spin through exchanging its spin state with
a nuclear spin. For increasing external field, the energy
mismatch between the nuclear spin states and the electron spin
state grows, and more and more energy has to be absorbed by
phonons—thus the relaxation can be suppressed by applying a
higher external field. The relaxation time T1 has been measured
in experiments to range from 170 ms (at B0 = 1.75 T) to
120 μs (B0 = 14 T) [34, 35].

In a phenomenological model of decoherence, the
timescales T1 and T2 are incorporated into a master equation
model for the density matrix with T1 on the diagonal
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(describing the effect of relaxation) and T2 on the off-diagonal
(describing dephasing):

d�

dt
=

[
(1/T1)�22 −(1/T2)�12

−(1/T2)�21 −(1/T1)�22

]

. (7)

Qualitatively, the off-diagonal phase components decrease
exponentially with a rate 1/T2, and the ground state �11

becomes populated at the expense of the excited state �22,
where the normalization condition (Tr[ρ(t)] = 1) has
to be fulfilled at any time t . Equation (7) is a general
phenomenological model to describe decoherence, and can
thus be adjusted to describe decoherence for a wide range of
systems, but it does not include microscopic information about
the quantum processes causing the decoherence.

We now discuss how to extend these decoherence models
(equations (3), (5) and (7)) to more than one qubit. For the
exponential decay, this is quite straightforward: we rewrite (7)
in the Lindblad formalism [42] using the Lindblad operator L:

L� = 	1

2
(2σ+�σ− − σ−σ+� − �σ−σ+)

+ 	2

2
(2σs�σs − σsσs� − �σsσs). (8)

Here, σ± = 1/2 (σx ± iσy) and σs = σ−σ+ are products of the
Pauli matrices. Comparing the density matrices resulting from
equations (7) and (8), we can identify 	1 = 1/T1 and 	1 +
	2 = 2/T2. The time evolution of a single qubit is then found
by solving L�(t) = d�/dt . To extend (8) to multipartite states,
we write the Lindblad operator for the kth qubit as Lk = 1I ⊗
. . .⊗1I⊗L⊗1I⊗. . .⊗1I, where L is the kth operator of a total of
N . The time evolution of the total N-partite state is then given
by solving as before LN�(t) = d�/dt , with LN = ∑N

k=1 Lk .
By using this definition we implicitly assumed that the
decoherence of each qubit is governed by the same 	1 and 	2.

For the two other models, given in (3) and (5), we
construct the density matrix of the entangled states in a
similar manner. Since the decoherence of the various
qubits is assumed to be independent, we can just multiply
the corresponding single matrix entries. For statistically
distributed quantities (such as, for example, 〈hz〉), we have
to consider the addition rules for distributions with the
corresponding variances, and furthermore we have to take into
account which contributions have to be conjugated (e.g. the
precession terms due to the magnetic field).

3. Two qubits

Let us first explain our methods and definitions for the simple
case of two qubits. A separable state �s is defined as a state
which can be written as a convex combination of product
states [1, 2, 4]:

�s =
∑

i

pi�
A
i ⊗ �B

i , (9)

where �A and �B are states in different subsystems A and
B and the probabilities pi have to fulfill the normalization
condition

∑
i pi = 1. If a state is not of this form, it is called

entangled.

We use witness operators [6, 12–16] to investigate the
entanglement of various states. An observable W is called
an entanglement witness if it fulfills the following two
requirements:

(i) For any separable state �s, the expectation value of W
is larger than zero: Tr[W�s] ≡ 〈W〉�s

� 0 for all �s

separable.
(ii) There must be at least one entangled state �e for which

W has a negative expectation value: there exists a �e

entangled for which 〈W〉�e
< 0.

Therefore, a measured negative expectation value of the
witness guarantees that the state is entangled. For the
experimental implementation, entanglement witnesses can
be decomposed into local measurements (see also below),
and they usually require much fewer measurements than
procedures such as full state tomography. Thus they are
experimentally easier to implement. Finally, it should be noted
that witnesses can be used to quantify entanglement, by giving
lower bounds on entanglement measures [43].

The witnesses we use in this paper are derived from the
so-called projector-like witness [17]:

Wψ = c1I − |ψ〉 〈ψ|, (10)

with the constant c standing for the maximum overlap between
the state |ψ〉 and any separable state. Physically, this witness
encodes the fact that, if a state � has a fidelity F =
Tr[�|ψ〉〈ψ|] larger than c, then � must be entangled.

We first investigate the time evolution of the Bell
state [1, 3] |�−〉 ≡ 1√

2
(|01〉 − |10〉). The choice of this Bell

state, the singlet state, is motivated by the fact that it is the
ground state of the quantum system consisting of two electron
spins in a double quantum dot [8]. Thus it is the simplest
entangled state that can be created in quantum dots.

The density matrix of a singlet state under exponential
decay can be found from equations (7) and (8):

��−(t) = 1
2

⎡

⎢
⎢
⎣

2[1 − α(t)] 0 0 0
0 α(t) −β(t) 0
0 −β(t) α(t) 0
0 0 0 0

⎤

⎥
⎥
⎦ , (11)

with the factors α(t) = exp[−t/T1] ≡ exp[−	1t] for
relaxation and β(t) = exp[−2t/T2] ≡ exp[−(	1 + 	2)t]
for dephasing. With that, the fidelity [7] F =
Tr[|�−〉〈�−|��−(t)] is given by

F(t) = 1
2 [α(t)+ β(t)], (12)

and the expectation value of the projective witness for |�−〉 is
then calculated using (10):

Tr[WSρ�−(t)] ≡ 〈WS〉�−(t) = 1
2 [1 − α(t) − β(t)], (13)

where WS is the witness for the singlet state, WS ≡ 1I/2 −
|�−〉〈�−|. Figure 1 shows the decay of entanglement for this
exponential model of decay of the coherence.

For the other two models of decoherence (equations (3)
and (5)), we first have to construct the corresponding density

4
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Figure 1. Expectation values for the regular ((13), solid red line) and
the filtered ((20), dashed blue line) witness for 	1 = 103 s−1 and
	2 = 106 s−1. The inset shows a zoom into the region where the
regular witness becomes positive. y is chosen such that the witness
expectation value becomes minimized at any given time, thus it is
time-dependent.

matrix: for the relaxation, we keep the exponential terms
e−t/T1 , but for the dephasing we use the correlators presented
in the previous section. The first model is based on the
superexponential dephasing from (3) for each qubit, whose
density matrix we label with ρse(t). We have to calculate the
entries |01〉 and |10〉; therefore the conjugation reverses the
phase in (3), so the off-diagonal dephasing terms [ρse](2,3) =
[ρse]∗(3,2) (the star ∗ stands for complex conjugate) are given in

terms of the correlators 〈S(i)+ 〉t of the i th dot (i ∈ {1, 2}) by

[ρse](2,3)(t) = 〈S(1)+ 〉t〈S(1)+ 〉∗t
= exp

[

−τ
2
1 + τ 2

2

2τ 2
1 τ

2
2

t2 + i

h̄
(〈h(1)z 〉 − 〈h(2)z 〉)t

]

= exp

[

− t2

τ 2
se

]

, (14)

where the second line is for identical statistics of the dots (thus
with identical characteristic times τ1 = τ2 ≡ τse). Including
the boundary condition [ρse](2,3)(0) = −1/2 we obtain the
density matrix:

ρse(t) = 1
2

⎡

⎢
⎣

2[1 − α(t)] 0 0 0
0 α(t) −βse(t) 0
0 −β∗

se(t) α(t) 0
0 0 0 0

⎤

⎥
⎦ , (15)

with α(t) = exp[−t/T1] as before and βse(t) = [ρse](2,3)(t)
from (14). The witness operator Wse for detecting (15) is thus
the same as in (13) with the replacement β(t) → βse. The
evolution of the corresponding witness is shown in figure 2(a).

The third model uses the non-Markovian Born approx-
imation for the decay, equations (5) and (6). The single-
electron decay is given by 〈S(bm)

+ 〉t = exp[−t/(2T1 + T2)] +
R+(t), where the first exponential term stems from the
Markovian solution, and the remainder term is given in (6).
In order to set up the density matrix ρbm(t) in the non-
Markovian approximation, we replace β(t) in (11) by βbm(t) =
〈S(bm)

+ 〉t〈S(bm)
+ 〉∗t , in the same way as in the superexponential

case.
In the next part we introduce a systematic method to

enlarge the time interval during which entanglement can be

Figure 2. (a) Decay of the entanglement witnesses (without (solid)
and with (dashed) filter) for the superexponential decoherence model
using τse = 4.4 ns (corresponding to p = 0.1). The inset shows the
advantage of the filter operator, which works here as well. (b) Decay
of the entanglement witnesses for the non-Markovian approximation,
including the correction term to the Markovian solution, for
characteristic time τbm = 1 μs, but an enhanced smallness parameter
δ = 0.1 in order to underline the effect of the correction term.

detected by the witness operators. This method is based on
applying local (so-called filtering) operators to the witness
operator and analyzing the measurement results in a different
way without requiring more measurements. Analyzing the
witness (13), we see immediately that it becomes positive (and
hence does not detect the entanglement anymore) when, after
some finite time, β(t) becomes smaller than 1−α(t), though it
can be shown (by virtue of the PPT criterion [44], for example)
that the state ��−(t) is entangled for any t < ∞, i.e. for any
β(t) > 0.

Therefore, our goal is to construct a witness operator
which is able to detect the entanglement in the state ��−(t)
at any time. This can be achieved by a filter operator F :

F = F1 ⊗ F2, (16)

where the Fi are arbitrary invertible matrices acting on
individual qubits. Since F is local, application of such a
filter operator on a state ρ does not change its entanglement
properties, i.e. F†�F is entangled, iff � is entangled.

Equivalently, one can apply filter operators to witness
operators W , and the resulting filtered witness operator WF

is then given by
WF = FWF†. (17)

5
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As normalization, we choose Tr[W] = Tr[WF], to make the
witnesses’ mean values comparable.

Our goal is now to design a filter Fi such that it increases
the negativity of the witness, i.e. it should increase the weight
of the terms α and β in (13), so that the filtered witness can be
used to detect entanglement during longer times. This can be
achieved by the following filter:

Fi =
[

1 0
0 y

]

, (18)

with y a positive real number. The normalized filtered witness
for the singlet state then takes the form

WF
S = (F1 ⊗ F2)WS(F1 ⊗ F2)

†

= 1

1 + y4

⎡

⎢
⎣

1 0 0 0
0 0 y2 0
0 y2 0 0
0 0 0 y4

⎤

⎥
⎦ , (19)

and the expectation value is given by

〈WF
S 〉

�−(t) = 1

1 + y4
[1 − α(t) − y2β(t)]. (20)

Clearly, 〈WF
S 〉

�−(t) is negative if y is chosen large enough
and time-dependent and t < ∞ (thus β(t) > 0), and the
negativity of the witness can be optimized by a suitable choice
of y ≡ y(t) for a given time t . The remaining entanglement
(which is not detected by WS, (13)) in the decohering state can
then be detected by measuring this filtered witness operator.
The effectiveness of the filter operator crucially depends on the
choice of the singlet state |�−〉 as the initial state: it can easily
be shown that, for the other Bell states |�±〉 = 1√

2
(|00〉±|11〉),

the filtered witness does not lead to any improvement over the
regular witness operator. The decay of entanglement in our
model thus strongly depends on the initial state, even within
the same basis.

For the experimental implementation, the witness WF
S can

be decomposed into single-qubit measurements [15]:

WF
S = 1

4(1 + y4)
[(1 + y4)(1I ⊗ 1I + σz ⊗ σz)− (1 − y4)

× (σz ⊗ 1I + 1I ⊗ σz)+ 2y2(σx ⊗ σx + σy ⊗ σy)]. (21)

This decomposition requires three measurement settings
(namely σi ⊗ σi with i ∈ {x, y, z}) instead of the nine
settings full state tomography would require [14, 45]. Similar
decompositions exist for all other witnesses occurring in this
paper [17, 47].

In figures 1 and 2, the evolution of the expectation values
for both the regular witnesses (solid line) and the filtered
witnesses (dashed line) are plotted. In the experimentally
relevant limit (	2 
 	1), the advantage of the filter operator
in an experiment does not manifest itself as strongly as would
be the case for 	2  	1; however, the principal advantage
that the entanglement can be detected for any finite time is
demonstrated in the insets by a zoom into the region where
the unfiltered witness becomes positive. The filtered witness
remains negative, albeit with a small, exponentially decaying
absolute value, for any finite time: this proves that the |�−〉

Figure 3. Comparison of the evolution of the filtered witness
operators for exponential decay, superexponential decay and the
Born approximation, using δ = 0.1. The unit of time τ is the critical
time in each model (thus τ = T2, τse, τbm). For short times, both the
superexponential and the non-Markovian approximation are
decaying less strongly than the exponential model, but after some
time, the witness assuming exponential decay has a greater
negativity. The inset compares the longer-time behavior of the three
models: the non-Markovian approximation features a periodic
recurrence of negative values (due to precession around the nuclear
magnetic field) and the slowest long-time decay (disregarding the
coherent precession).

contains at least a very small amount of entanglement at any
time under our decoherence models; however, it will not lead
to a significant advantage in an experiment, since the noise due
to imperfect state preparation and measurement fidelities will
render it virtually impossible to measure the expectation value
with such a high precision.

From this curve, one can conclude that it becomes difficult
to detect entanglement after more than a few μs under
realistic conditions assuming any of the decay models we have
considered (for the superexponential decay even after a few
ns, but for all models the exact time also depends on the
size of the error bars in a given experiment). Consequently,
any generation scheme for the Bell states which requires a
generation time longer than this time will probably not work
in practice.

Let us conclude this section by a comparison of the
three models. The evolution of the expectation values of
the filtered witnesses is plotted in figure 3 (all in units of
the respective critical time for the comparison). In the non-
Markovian approximation, we have chosen the smallness
parameter δ = 0.1 such that the effect of the correction can
be shown. This comparison reveals benefits and drawbacks
of each decay model: first, the filtered entanglement operators
are all negative for any finite time t < ∞. The entanglement
in the superexponential model decays faster than in the other
two, and in the non-Markovian approximation we see the effect
of the power-law tail (the second term in (6)) as a periodic
rebouncing due to the precession around the z component of
the nuclear magnetic field, hz . As a result, the expectation
value of this witness operator is more negative than for the
purely exponential decay. In the main plot showing the short
time evolution scaled by the critical time for each model, the
differences between the models are not as pronounced, and
they behave roughly the same.
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Let us consider a realistic experiment at this point: in
an experiment, it is likely that errors will arise due to an
imperfect read-out of the electron spin states [35, 46], which
will manifest themselves as error bars on the curves for the
time evolution. This error will make it unlikely to detect
the entanglement at longer times in a realistic experiment.
Regarding figure 3 with these errors in mind, the evolution
within the three models is roughly equivalent. Another source
of possible experimental inaccuracies is the preparation of the
initial state—in general, it will not be the exact aimed-for state,
but a mixture of states. This mixture will influence the use
of the witness and the filter operator, which as well strongly
depends on the nature of the mixture; though the precise
influence is hard to predict, the filter will always improve the
witness operator to some degree. However, the creation of
pure singlet states in double quantum dots has already been
experimentally achieved in a controllable manner and with a
high probability of success [23]. Therefore we expect that our
noiseless results can nevertheless be used to give qualitative
predictions of the decay of entanglement.

So far, we have considered two entangled qubits and
found that their entanglement remains detectable for about the
same time for three decoherence models. When considering
generalization to many qubits, we note that the exponential
model features a large advantage compared to the other two,
since for this model there is a general method for calculating
the time evolution of the density matrix for an arbitrary number
of qubits (see also section 6), whereas for the two other models
we have to construct the density matrix for each new state by
hand. Therefore, in the following sections, we will use the
exponential model for the generalization to multiple qubits.

4. Three qubits

For three or more particles, the situation is more compli-
cated, since different classes of multiparticle entanglement
exist [48–50].

Let us first discuss the notion of partial separability. A
state can be partially separable, meaning that some of the qubit
states are separable, but not all. An example for three particles
is the state

|ψbs〉 = |φAB〉 ⊗ |φC〉, (22)

where |φAB〉 is a (possibly entangled) state of two qubits
(defined on subsystems A and B) and |φC 〉 a state of the
third qubit (defined on subsystem C). The state |ψbs〉 is
separable with respect to a certain bipartite split, so it is called
biseparable. A mixed state is biseparable if it can be written as
a mixture of biseparable pure states.

If a state is not biseparable, it is genuinely multipartite
entangled. There exist different classes of multipartite
entangled states [48] and the number of entanglement classes
increases with the number of qubits [51]. An entanglement
class can be defined by the following question: given a single
copy of two pure states |ψ〉 and |φ〉, is it possible, at least in
principle, to transform |ψ〉 into |φ〉 (and vice versa) using local
transformations only? Even if the probability of success is
small? For three qubits, for example, two entanglement classes
exist, the GHZ and the W class. Every genuine multipartite

entangled three-qubit state can be transformed into one of the
two states [48]:

|GHZ3〉 = 1√
2
(|010〉 + |101〉) , (23)

|W3〉 = 1√
3
(|100〉 + |010〉 + |001〉) , (24)

but, remarkably, these two states cannot (not even stochas-
tically) be transformed into each other and are therefore
representatives of different entanglement classes.

Let us now investigate the lifetime of these two states
using our exponential decoherence model, described below (8).
After calculating the time evolution of the two states, we obtain
for the corresponding fidelities:

FGHZ(t) = 1
4 (exp [−2	1t] + exp [−	1t]

+ 2exp
[− 3

2 (	1 + 	2)t
]
), (25)

FW (t) = 1
3 (exp [−	1t] + 2exp [−(	1 + 	2)t]). (26)

From these fidelities, the expectation values of the witnesses
can directly be determined as 〈WG〉ρG(t) ≡ 1/2 − FGHZ(t) for
the GHZ state and 〈WW 〉ρW (t) ≡ 2/3 − FW (t) for the W state.

Our next step is to apply the filter operators to the
witnesses. This yields the following values for the expectation
value of the filtered witness operators:

〈WF
G 〉

�G(t)
= 3

2(1 + 2y2 + 2y4 + y6)
[2 + (−3 + 2y2)e−	1t

+ (1 − 2y2)e−2	1t − 2y3e− 3
2 (	1+	2)t ], (27)

〈WF
W 〉

�W (t)
= 13

3(2 + 3y2 + 6y4 + 2y6)

[2 + (−2 + y2)e−	1t − 2y2e−(	1+	2)t ]. (28)

These witness operators can be measured by four (for the
GHZ state) or five (for the W state) measurement settings [47],
compared to the 27 measurement settings required for full state
tomography. In principle, the witness for the W state can
be improved by taking the projector onto the subspace with
at most two excitations [16] (1I2 = 1I − |111〉〈111| instead
of 1I). However, in the present case this does not give any
improvement, since the |111〉〈111| state is not populated. The
time evolution of the witness expectation values (27) and (28)
are plotted in figure 4 (for 	1 = 103 s−1 and 	2 = 106 s−1).

5. Four qubits

The more qubits that are added, the more distinct classes of
entangled states arise. For four qubits, we investigate the
following four classes:

|GHZ4〉 = 1√
2
(|0101〉 + |1010〉) , (29)

|C4〉 = 1
2 (|0101〉 + |0110〉 + |1001〉 − |1010〉) , (30)

|W4〉 = 1
2 (|1000〉 + |0100〉 + |0010〉 + |0001〉) , (31)

|D4〉 = 1√
6
(|0011〉 + |0101〉 + |0110〉

+ |1001〉 + |1010〉 + |1100〉). (32)

7
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Figure 4. Expectation values for the witnesses for the tripartite
GHZ and W states, both regular (solid lines) and filtered (dashed), as
a function of time t . The projected filter WF p

W (see text) is plotted as
well, though it is not better than the filtered witness WF

W . Parameters
used are 	1 = 103 s−1 and 	2 = 106 s−1. As in figure 1, y is
time-dependent and chosen so as to minimize the witness expectation
value.

All of these states have been realized in various experiments
for different physical systems6, but so far not in solid
state nanosystems. Also, some of their decoherence
properties have been investigated from different theoretical
perspectives [53, 54]. The states |GHZ4〉 and |W4〉 are the four-
qubit versions of the states we have investigated for three qubits
in the previous section. |C4〉 is a representative of the so-called
cluster class [55], important in the context of one-way quantum
computing [56]. The Dicke state [57] |D4〉 is an extension of
the W state and consists of all possible permutations of states
containing two excitations. The fidelity of these states evolves
as

FGHZ4(t) = 1
2 (exp [−2	1t] + exp [−2(	1 + 	2)t]) , (33)

FC4 (t) = 1
2 (exp [−2	1t] + exp [−2(	1 + 	2)t]

+ exp [−(2	1 + 	2)t]), (34)

FW4 (t) = 1
4 (exp [−	1t] + 3 exp [−(	1 + 	2)t]) , (35)

FD4(t) = 1
6 (exp [−2	1t] + exp [−2(	1 + 	2)t]

+ 4 exp [−(2	1 + 	2)t]). (36)

The corresponding projective witnesses can be found, as
before, using c1I − F(t), with c = 1/2 for the cluster and
GHZ states, c = 3/4 for the W state and c = 2/3 for the Dicke
state [58].

Again, filter operations can be applied: the resulting
formulae are lengthy and therefore not given here. The
improvement over the regular witness again shows (as for the
general case of N qubits) that the GHZ state contains in theory
entanglement for any finite time—but so little that this result is
of a theoretical nature and not experimentally relevant. For
the other classes of states, the filter can lead to a slightly
higher negativity, but not to an extension of the time where
the expectation value will become positive. So what is left is
to compare the differences in the evolution of the expectation
values of these witness operators for the four classes, and to

6 See, e.g., [17, 18] and Kiesel et al [19] for realizations of GHZ, W and
cluster states of up to eight qubits using photons and ions, respectively,
and [52] for a four-qubit Dicke photon state.

Figure 5. Expectation values for the filtered witness operators for the
four considered classes of four-partite entangled states (GHZ, cluster,
W and Dicke). The filter operator makes the entanglement in the
GHZ state detectable for arbitrarily long times (at least in principle).
The entanglement of the other three classes decays faster, but the
cluster state is more stable (decays slower) than both the W and the
Dicke states. Parameters used are the same as in figure 4.

Figure 6. Expectation values of the witnesses for some four-partite
cluster states. The upper index indicates the number of terms in the
representation of each state, while the state without an index is the
one given in (30). Parameters used are the same as in figure 4.

see which one is the most stable, i.e. detectable for the longest
time. This is done in figure 5.

At this point the same question can be asked as for the
two-qubit state that we investigated in section 3: how does the
available detection time depend on the exact state chosen as
representative of a class? Or, equivalently, the fidelity of which
state decoheres most slowly? In fact, writing the states above
in a different basis leads to different decay rates.

This is illustrated in figure 6, where the evolution of
the witness expectation value of four different cluster states
is plotted: |C4〉 from (30), |C (16)

4 〉 is the original cluster
state from [59] containing 16 terms, and the two additional
representations

|C (4)
4 〉 = 1

2 (|0000〉 + |0011〉 + |1110〉 + |1101〉), (37)

|C (8)
4 〉 = 1

23/2
(|0000〉 + |0011〉 + |0100〉 + |0111〉

− |1000〉 − |1010〉 + |1101〉 + |1110〉), (38)

with four and eight terms, respectively (the first one is a
representation with the minimal number of terms, which will

8
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be used again in the next section, the second one a rotated
version of the original cluster state). As can be seen in
figure 6, the detection time decreases as the number of terms
increases, though the effect is not very large for four or more
terms. The representations with the minimal number of terms
thus decohere more slowly. This is not surprising, since
one can prove for a similar decoherence model that states
with the minimal number of terms are most robust [53]. For
representations with the same number of terms, the number of
excitations in each term can influence the detectability: which
one of the two is easier to detect then depends on the ratio of
	1 and 	2.

6. N qubits

Let us now consider the general situation of N qubits. We
concentrate on three types of entangled states for which there
exist proposals how to generate them using available single-
and two-qubit operations in quantum dots [60]: GHZ, W and
cluster states. Our goal is to calculate the time evolution of
the normal (unfiltered) witness for arbitrary N and compare
this with the time necessary to generate and measure the state.
The representatives of the first two classes can be written down
straightforwardly (for even N):

|GHZN 〉 = 1√
2
(|01 . . . 01〉 + |10 . . . 10〉), (39)

|WN 〉 = 1√
N
(|00 . . . 01〉 + |00 . . . 10〉 + · · · + |10 . . . 00〉).

(40)
Calculating the expectation value of the witness operators leads
to (for even N)

〈WG〉�G (t) = 1

2

{

1 − exp

[

− N

2
	1t

]

− exp

[

− N

2
(	1 + 	2)t

]}

, (41)

〈WW 〉�W (t) = 1

N
{N − 1 − exp [−	1t]

− (N − 1)exp [−(	1 + 	2)t]}. (42)

The general form of the cluster state—the one we consider
here containing the minimal number of terms, namely 2N/2—is
more complicated; it can be written as7

|CN 〉 =
n⊗

k=1

[|00〉 + |11〉(σx ⊗ 1I)]√
2

, (43)

where this formula should be understood as an iteration, with
the operator (σx ⊗ 1I) acting on the Bell state of the next two
qubits. For four qubits, this results exactly in the representation
|C (4)

4 〉 from (37), the evolution of which is plotted in figure 6.

7 In general, a cluster state is defined as an eigenstate of certain local
observables [55, 56]; here we choose them as S1 = σzσz 1I . . .; S2 =
σxσxσx 1I . . .; S3 = 1Iσzσzσz1I . . .; . . .; SN = 1I . . . 1Iσxσx . This is locally
equivalent to the definition as in [55, 56]; however, the state given in (43)
contains the minimal number of terms; see [53].

Figure 7. The dots show the time at which the expectation value of
the (unfiltered) witness for a given class of states becomes positive as
a function of the qubit number N . Parameters used are 	1 = 103 s−1

and 	2 = 106 s−1, except for the cluster state where the relaxation is
disregarded (	1 = 0). Also plotted are (shown by lines) the times
required to generate the given entangled states, see the text for
explanation.

To calculate the time evolution of the fidelity, we represent the
cluster state (43) as [56]

|CN 〉 〈CN | =
N∏

k=1

1I + Sk

2
(44)

with Sk a product of Pauli matrices. We incorporate the effects
of dephasing (disregarding the relaxation of the qubits, i.e.
setting 	1 = 0, which leads to an error of less than 0.01�
for four qubits) in every term in the sum of the expanded (44).
The resulting fidelity of the cluster state can then easily be
calculated numerically up to N = 24 qubits.

Figure 7 shows the time at which the expectation value
of the (unfiltered) projective witness for each of the three
states (equations (41), (42) and (44)) becomes positive as a
function of the qubit number N , as well as a rough estimate
of the time necessary to generate and measure these states.
For electron spin qubits in quantum dots the generation times
are taken from [60]: for both the cluster and the W states the
time required to produce these states is independent of the
number of qubits, whereas the production time of states of
the GHZ class scales linearly with the number of qubits. The
measurement times are composed as follows: measurement
distinguishes between spin-up and spin-down (defined along
the z axis [35]) and measuring the components σx and σy then
requires a rotation of the spins by π/2, which takes about
∼50 ns [24]. The sum of the generation and the measurement
time is given by the lines in the plot.

We see in figure 7 that (as in figures 4 and 5) the
entanglement of the GHZ state can be detected for the longest
times, but it is more time-consuming to generate than the other
two entangled states. Based on the estimates in figure 7,
generation and detection of GHZ states should be possible
for up to 14 qubits (with the standard projective witness and
assuming current operation and decoherence times for electron
spin qubits). The cluster state is the state which can be
detected for the largest number of qubits, although for up to
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12 qubits the ‘time reserve’ (i.e. the difference between the
time needed for generation and measurement and the time
when the expectation value of the witness operator becomes
positive) for the GHZ state is somewhat larger than for the
cluster state. The W state is the least suitable; the largest state
would contain about ∼10 qubits.

Our results for the cluster state show that one-way
quantum computing [55] is not really feasible in quantum dots
with current dephasing times: we expect that up to maximally
∼12 qubits could be entangled under the presented preparation
scheme, which is far too few for exploiting the advantages of a
quantum computer.

Based on our assumptions, thus, the simplest state to
generate and prove its entanglement would be the GHZ
state for up to twelve qubits, and the cluster state for more
than twelve and up to twenty qubits, though the remaining
entanglement becomes very small. The same holds for the
filtered witness for the GHZ state for an arbitrary number of
qubits.

7. Conclusion

In conclusion, we have investigated entanglement and its
detectability in a linear array of electron spin qubits which
locally undergo decoherence. We have considered three
different phenomenological models for the dephasing of the
qubits based on exponential and superexponential decay. Using
witness operators as detectors of entanglement and introducing
a specific class of filtered witness operators, we estimated the
maximum available detection time for entanglement of two
electrons using each of the models and found that the time
during which entanglement is detectable is independent of the
model chosen. We then expanded the exponential model to the
case of multipartite entanglement. For three and four qubits,
we compared the decay of entanglement for different classes of
entangled states with each other, namely the GHZ, W cluster
and Dicke classes. We also gave limits on the maximum
number of entangled qubits that can be created and measured
based on currently known decoherence times for electron spin
qubits. The most suitable entangled state turns out to be the
GHZ state for up to a few qubits. Our results can help to
make a choice as to which state to prepare in experiments.
Since local decoherence is characteristic for many types of
solid state qubits, our model and the filtered operator technique
are applicable to a variety of these qubits.
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